tp2 m1 mikro



Percobaan 4 kondisi 1
Led RGB, PIR & Touch sensor


1. Prosedur[Kembali]

   
  1. Buat rangkaian sesuai kondisi dan modul pada software proteus
  2. Buka software STM32CubeIDE, atur dan pilih STM32F103C8T6 untuk dikonfigurasikan dan diinisialisasi
  3. Konfigurasikan pin input/output microcontroller pada software STM32CubeIDE
  4. Generate Code untuk mendapatkan file C codingan
  5. Masukkan algoritma pemograman berdasarkan cara kerja kondisi rangkaian
  6. Konversikan file ke dalam ekstensi .hex
  7. Masukkan library sensor pada sensor dan file codingan dalam bentuk .hex pada microcontroller di software proteus
  8. Jalankan rangkaian
  9. Selesai

2. Hardware dan Diagram Blok[Kembali]

Hardware :

  • STM32F103C8




  • LED RGB


  • Resistor
Diagram Blok







3. Rangkaian Simulasi[Kembali]

  • Rangkaian sebelum di running








  • Rangkaian setelah di running










  • Prinsip Kerja 
Prinsip kerja program ini adalah membaca status sensor PIR dan sensor sentuh untuk mengontrol dua LED. Jika sensor PIR mendeteksi gerakan, LED merah akan menyala selama 3 detik, lalu mati selama 3 detik. Jika tidak ada gerakan, program akan mengecek sensor sentuh. Jika sensor sentuh aktif, LED biru akan menyala selama 3 detik, lalu mati selama 3 detik. Jika kedua sensor tidak aktif, semua LED akan tetap mati. Program ini berjalan dalam loop terus-menerus untuk mendeteksi perubahan status sensor secara real-time.



4. Flowchart dan Listing Program[Kembali]

  • Flowchart








  • Listing Program

/* USER CODE BEGIN Header */

/**

******************************************************************************

* @file : main.c

* @brief : Main program body

******************************************************************************

* @attention

*

* Copyright (c) 2025 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

******************************************************************************

*/

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"


/* Private includes ----------------------------------------------------------*/

/* USER CODE BEGIN Includes */


/* USER CODE END Includes */


/* Private typedef -----------------------------------------------------------*/

/* USER CODE BEGIN PTD */


/* USER CODE END PTD */


/* Private define ------------------------------------------------------------*/

/* USER CODE BEGIN PD */


/* USER CODE END PD */


/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PM */


/* USER CODE END PM */


/* Private variables ---------------------------------------------------------*/


/* USER CODE BEGIN PV */


/* USER CODE END PV */


/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

/* USER CODE BEGIN PFP */


/* USER CODE END PFP */


/* Private user code ---------------------------------------------------------*/

/* USER CODE BEGIN 0 */


/* USER CODE END 0 */


/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{


/* USER CODE BEGIN 1 */


/* USER CODE END 1 */


/* MCU Configuration--------------------------------------------------------*/


/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();


/* USER CODE BEGIN Init */


/* USER CODE END Init */


/* Configure the system clock */

SystemClock_Config();


/* USER CODE BEGIN SysInit */


/* USER CODE END SysInit */


/* Initialize all configured peripherals */

MX_GPIO_Init();

/* USER CODE BEGIN 2 */


/* USER CODE END 2 */


/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1) {

uint8_t pir_status = HAL_GPIO_ReadPin(GPIOB, input_pir_sensor_Pin);

uint8_t touch_status = HAL_GPIO_ReadPin(GPIOB, input_touch_sensor_Pin);


if (pir_status == GPIO_PIN_SET) {

HAL_GPIO_WritePin(GPIOA, output_red_Pin, GPIO_PIN_SET);

HAL_Delay(3000);

HAL_GPIO_WritePin(GPIOA, output_red_Pin, GPIO_PIN_RESET);

HAL_Delay(3000);

} else {

if (touch_status == GPIO_PIN_SET) {

HAL_GPIO_WritePin(GPIOB, output_blue_Pin, GPIO_PIN_SET);

HAL_Delay(3000);

HAL_GPIO_WritePin(GPIOB, output_blue_Pin, GPIO_PIN_RESET);

HAL_Delay(3000);

} else {

HAL_GPIO_WritePin(GPIOB, output_blue_Pin, GPIO_PIN_RESET);

}



HAL_GPIO_WritePin(GPIOA, output_red_Pin, GPIO_PIN_RESET);

}



}


/* USER CODE END WHILE */


/* USER CODE BEGIN 3 */


/* USER CODE END 3 */

}


/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};


/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}


/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;


if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

{

Error_Handler();

}

}


/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */


/* USER CODE END MX_GPIO_Init_1 */


/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOD_CLK_ENABLE();

__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();


/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(GPIOA, output_red_Pin|output_green_Pin, GPIO_PIN_RESET);


/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(output_blue_GPIO_Port, output_blue_Pin, GPIO_PIN_RESET);


/*Configure GPIO pins : output_red_Pin output_green_Pin */

GPIO_InitStruct.Pin = output_red_Pin|output_green_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);


/*Configure GPIO pin : output_blue_Pin */

GPIO_InitStruct.Pin = output_blue_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(output_blue_GPIO_Port, &GPIO_InitStruct);


/*Configure GPIO pins : input_pir_sensor_Pin input_touch_sensor_Pin */

GPIO_InitStruct.Pin = input_pir_sensor_Pin|input_touch_sensor_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);


/* USER CODE BEGIN MX_GPIO_Init_2 */


/* USER CODE END MX_GPIO_Init_2 */

}


/* USER CODE BEGIN 4 */


/* USER CODE END 4 */


/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}


#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */

5. Kondisi[Kembali]

Buatlah rangkaian seperti gambar pada percobaan 4 dengan kondisi ketika PIR mendeteksi gerakan maka LED RGB akan menampilkan warna merah selama 3 detik lalu mati selama 3 detik secara berulang dan ketika Touch mendeteksi sentuhan maka LED RGB akan menampilkan warna biru selama 3 detik lalu mati selama 3 detik secara berulang


6. Video Simulasi[Kembali]

     








7. Download File[Kembali]

HTML [Download]
Rangkaian [Download
Listing Program [Download]
Video Simulasi [Download]  
  









 

Komentar

Postingan populer dari blog ini

BAHAN PRESENTASI UNTUK MATA KULIAH ELEKTRONIKA 2022