TP 1 M2 MIKRO



Percobaan 3 kondisi 6
Motor DC (Dinamo DC),Push Button, Buzzer, & LDR/Photodioda


1. Prosedur[Kembali]

1. Rangkai rangkaian sesuai gambar di proteus.
2. Tulis program untuk STM32.
3. Masukan file HEX program ke proteus.
4. Jalankan sistem dan uji sensor PIR serta LED.
5. Selesai.

2. Hardware dan Diagram Blok[Kembali]

Hardware :
1. STM32F103C8 

2. Motor DC


3. LDR


4. Resistor 
5. Buzzer
 
4. Transistor
 
Diagram Blok:





3. Rangkaian Simulasi[Kembali]

  • Rangkaian sebelum di running
  • Prinsip Kerja 

Rangkaian menggunakan mikrokontroler STM32F103C8 sebagai pusat pengendali. Sensor LDR berfungsi mendeteksi intensitas cahaya dan disusun seperti potensiometer sebagai input ADC untuk membaca tegangan analog. Nilai ini dikonversi ke digital oleh mikrokontroler.

Jika nilai ADC berada di bawah 1700, maka mikrokontroler mengeluarkan sinyal PWM dengan duty cycle 25% ke basis transistor BD139 melalui resistor R1, sehingga motor DC berputar pelan. Pada kondisi ini, buzzer aktif dengan frekuensi rendah.

Jika nilai ADC berada di atas 2900, maka STM32 menghasilkan sinyal PWM dengan duty cycle 90%, menyebabkan motor DC berputar cepat, dan buzzer mati. Dioda D1 digunakan sebagai proteksi terhadap arus balik dari motor DC.


4. Flowchart dan Listing Program[Kembali]

  • Flowchart






  • Listing Program

/* USER CODE BEGIN Header */

/**

******************************************************************************

* @file : main.c

* @brief : Main program body

******************************************************************************

* @attention

*

* Copyright (c) 2025 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

******************************************************************************

*/

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"


ADC_HandleTypeDef hadc1;

TIM_HandleTypeDef htim1; // Motor

TIM_HandleTypeDef htim2; // Buzzer


void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_ADC1_Init(void);

static void MX_TIM1_Init(void);

static void MX_TIM2_Init(void);


int main(void)

{

HAL_Init();

SystemClock_Config();

MX_GPIO_Init();

MX_ADC1_Init();

MX_TIM1_Init();

MX_TIM2_Init();


HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1); // Motor PWM

HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3); // Buzzer PWM

HAL_ADC_Start(&hadc1);


const uint16_t THRESH_LOW = 1700;

const uint16_t THRESH_HIGH = 2900;


while (1)

{

HAL_ADC_Start(&hadc1);

HAL_ADC_PollForConversion(&hadc1, 10);

uint32_t adc_val = HAL_ADC_GetValue(&hadc1);


if (adc_val < THRESH_LOW)

{

// Motor duty 25%

__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 250);


// Buzzer frekuensi rendah (misal 500 Hz)

uint32_t period = 143999; // Freq = 500 Hz dengan prescaler

__HAL_TIM_SET_AUTORELOAD(&htim2, period);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, period / 2); // 50% duty

}

else if (adc_val > THRESH_HIGH)

{

// Motor duty 90%

__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 900);


// Buzzer OFF

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);

}

else

{

// Semua OFF

__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);

}


HAL_Delay(10);

}


}



/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};


/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}


/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;


if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

{

Error_Handler();

}

PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;

PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;

if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)

{

Error_Handler();

}

}


/**

* @brief ADC1 Initialization Function

* @param None

* @retval None

*/

static void MX_ADC1_Init(void)

{


/* USER CODE BEGIN ADC1_Init 0 */


/* USER CODE END ADC1_Init 0 */


ADC_ChannelConfTypeDef sConfig = {0};


/* USER CODE BEGIN ADC1_Init 1 */


/* USER CODE END ADC1_Init 1 */


/** Common config

*/

hadc1.Instance = ADC1;

hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;

hadc1.Init.ContinuousConvMode = ENABLE;

hadc1.Init.DiscontinuousConvMode = DISABLE;

hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;

hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

hadc1.Init.NbrOfConversion = 1;

if (HAL_ADC_Init(&hadc1) != HAL_OK)

{

Error_Handler();

}


/** Configure Regular Channel

*/

sConfig.Channel = ADC_CHANNEL_0;

sConfig.Rank = ADC_REGULAR_RANK_1;

sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;

if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN ADC1_Init 2 */


/* USER CODE END ADC1_Init 2 */


}


/**

* @brief TIM1 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM1_Init(void)

{


/* USER CODE BEGIN TIM1_Init 0 */


/* USER CODE END TIM1_Init 0 */


TIM_MasterConfigTypeDef sMasterConfig = {0};

TIM_OC_InitTypeDef sConfigOC = {0};

TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};


/* USER CODE BEGIN TIM1_Init 1 */


/* USER CODE END TIM1_Init 1 */

htim1.Instance = TIM1;

htim1.Init.Prescaler = 0;

htim1.Init.CounterMode = TIM_COUNTERMODE_UP;

htim1.Init.Period = 65535;

htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

htim1.Init.RepetitionCounter = 0;

htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)

{

Error_Handler();

}

sConfigOC.OCMode = TIM_OCMODE_PWM1;

sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;

sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;

if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)

{

Error_Handler();

}

sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;

sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;

sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;

sBreakDeadTimeConfig.DeadTime = 0;

sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;

sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;

sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;

if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM1_Init 2 */


/* USER CODE END TIM1_Init 2 */

HAL_TIM_MspPostInit(&htim1);


}


/**

* @brief TIM2 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM2_Init(void)

{


/* USER CODE BEGIN TIM2_Init 0 */


/* USER CODE END TIM2_Init 0 */


TIM_MasterConfigTypeDef sMasterConfig = {0};

TIM_OC_InitTypeDef sConfigOC = {0};


/* USER CODE BEGIN TIM2_Init 1 */


/* USER CODE END TIM2_Init 1 */

htim2.Instance = TIM2;

htim2.Init.Prescaler = 0;

htim2.Init.CounterMode = TIM_COUNTERMODE_UP;

htim2.Init.Period = 65535;

htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)

{

Error_Handler();

}

sConfigOC.OCMode = TIM_OCMODE_PWM1;

sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM2_Init 2 */


/* USER CODE END TIM2_Init 2 */

HAL_TIM_MspPostInit(&htim2);


}


/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */


/* USER CODE END MX_GPIO_Init_1 */


/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOD_CLK_ENABLE();

__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();


/*Configure GPIO pin : PB0 */

GPIO_InitStruct.Pin = GPIO_PIN_0;

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);


/* USER CODE BEGIN MX_GPIO_Init_2 */


/* USER CODE END MX_GPIO_Init_2 */

}


/* USER CODE BEGIN 4 */


/* USER CODE END 4 */


/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}


#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */


5. Kondisi[Kembali]

Buatlah rangkaian seperti gambar pada percobaan 3, Jika nilai potensiometer di bawah threshold 1700 maka motor DC berputar dengan duty cycle 25% dan buzzer berbunyi dengan frekuensi rendah; jika nilai di atas threshold 2900 maka motor DC berputar dengan duty cycle 90% dan buzzer mati.

     








7. Download File[Kembali]

HTML [Download]
Rangkaian [Download
Listing Program [Download]
Video Simulasi [Download]  
  









 

Komentar

Postingan populer dari blog ini

BAHAN PRESENTASI UNTUK MATA KULIAH ELEKTRONIKA 2022